
Logic, Sets, and Function

John M. Morrison

August 21, 2023

Contents

0 Introduction 2

1 Predicates and Boolean Operations 2

2 Logical Connectives 3

3 Tautologies 4

4 Associating and Distributing 5

5 Quantifiers 7

6 Sets 8

7 Relations 10

7.1 Equivalences and Equivalence Classes 10

7.2 Ordering Relations . 11

8 Functions 11

9 Composition of Functions 13

1

1 PREDICATES AND BOOLEAN OPERATIONS

0 Introduction

In this chapter we will lay out certain ideas that are absolutely fundamental to
the study of mathematics or computer science. Logically enough, we will begin
with the study of propositional calculus and elementary set theory. This is the
semantic foundation of mathematics.

1 Predicates and Boolean Operations

We begin with a definition. A predicate or proposition is a statement that
evaluates to true or false. For example, the proposition 4 ∗ 5 = 17 evaluates
to false. The proposition stating that a US dollar has a vale of 100 cents to
true.

Things get interesting when we begin to combine propositions. The most
basic operation you can do on a proposition is to negate it, i.e. reverse its truth
value. This is accomplished using the prefix unary operator ¬. For example, if
we take P = (4∗5 = 17), then ¬P = (4∗5! = 17), which is true. This operator
is defined in a truth-table as follows.

P ¬P
T T
T F

If P and Q are propositions, then the proposition P ∨ Q is defined to be
true if at least one of P or Q is true. The infix binary operator ∨ is called the
Boolean or operator. Here is the truth-table for it. Note that the table must
hve four lines, one for each possible state of the two propositions.

P Q P ∨Q
T T T
T F T
F T T
F F F

If P and Q are propositions, then the proposition P ∧Q is defined to be true
if both of P and Q are true. The infix binary operator ∧ is called the Boolean
and operator. Here is its truth-table.

P Q P ∧Q
T T T
T F F
F T F
F F F

©2021-2022, John M. Morrison 2

2 LOGICAL CONNECTIVES

If P and Q are propositions, then the proposition P ⊕ Q is defined to be
true if exactly one of P or Q are true. The infix binary operator ⊕ is called
the Boolean xor (exclusive or) operator. Here is its truth-table.

P Q P ⊕Q
T T F
T F T
F T T
F F F

There is an order of precedence for and, or and not is not, and, or. So int
expression ¬P ∨ Q, the ¬P binds to the P before ∨ can act. The order of
operations can be overridden, just as in Miss Wormood’s Algebra class, using
parentheses.

2 Logical Connectives

This is all very interesting, but we are not equipped with a means for connecting
propositons. We shall remedy that deficiency presently.

If P nd Q are propositons, we define the implies operator =⇒ by P =⇒ Q
when ¬P ∨Q. Here is a truth-table

P Q P =⇒ Q
T T T
T F F
F T T
F F T

A consequence of this definition is that a false statement implies anything. This
is how we reperesent the if-then turn of logc. If P is true, Q must be true. But if
P is false, all bets are off. The =⇒ operator behaves much like ≤ for numbers.

There is a second logical connector, ⇐⇒ . We show its truth-table here.

P Q P ⇐⇒ Q
T T T
T F F
F T F
F F T

The proposition P ⇐⇒ Q is true precisely when P and Q have the same
truth-values.

©2021-2022, John M. Morrison 3

3 TAUTOLOGIES

If we have an implcation P =⇒ Q we say that Q =⇒ P is the converse
of P =⇒ Q. Because an implication is true, there is no guarentee its converse
is true. Consider these predicates, P (x) = “x is a cat, and Q(x), “x is a tiger.”
We have Q(x) =⇒ P (x) becasue every tiger is a cat. On the other hand, a
lion is not a tiger, so we do not have Q(x) =⇒ P (x). This is a common source
of faulty logic.

In the order of operations, logical connectors have the lower precedence than
not, and, or, and exclusive or.

3 Tautologies

A tautology is a proposition that is always true. You can verify tautologies by
using truth-tables. It is the most primitive form of mathematical truth.

Theorem 1. For a proposition P , ¬¬P ⇐⇒ P .

Proof. To establish this, we build out a truth-table as follows. First let’s negate
P

P ¬P
T F
T F

Now add a column for ¬¬P We populate it by negating the items in the ¬P
columnn.

P ¬P ¬P
T F T
T F T

Now we add a P ⇐⇒ ¬P column, populating it by checking if the P and ¬P
columns have the same truth-values

P ¬P ¬¬P P ⇐⇒ ¬¬P
T F T T
T F T T

The not operator ¬ is an involution, i.e. it is its own inverse. This is has
a familiar look, as the prefix unary change-sign opeator - in arithmetic is its
own inverse. We will now establish a very important tautology that relates
implication to logical equivalance.

©2021-2022, John M. Morrison 4

4 ASSOCIATING AND DISTRIBUTING

Theorem 2. If P and Q are propositions, then

(P ⇐⇒ Q) ⇐⇒ (P =⇒ Q ∧Q =⇒ P).

Proof. We begin by obtaining the truth values for P =⇒ Q ∧Q =⇒ P .

P Q P =⇒ Q Q =⇒ P P =⇒ Q ∧Q =⇒ P
T T T T T
T F F T F
F T T F F
F F T T T

Now compare this with the truth-table for P ⇐⇒ Q.

P Q P ⇐⇒ Q
T T T
T F F
F T F
F F T

Since the truth values in the last columns agree, the tautology follows. So =⇒
behaves much like ≤ does for numbers.

Exercises

1. Verify the tautology P ∨Q ⇐⇒ Q∨ P . The operator ∨ is commutative.
So is ∧, and the proof of that is boringly similar to the case of ∨.

2. Verify the tautology (P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P). This is called the
contrapositive. If it’s not a cat, it’s not a tiger.

3. Verify the De Morgan law ¬(P ∨Q) ⇐⇒ ¬P ∧ ¬Q.
4. Verify the De Morgan law ¬(P ∧Q) ⇐⇒ ¬P ∨¬Q. Can you obtain this

DeMorgan law from the other?

4 Associating and Distributing

In general, if you want to verify a tautology with n propositions in it, you must
make a table with 2n rows, so you get all of the joint states of the truth-values
of the propositions. Here is Here is a case study

Theorem 3. For any propositions P , Q and R, P ∨ (Q∨R) ⇐⇒ (P ∨Q)∨R.

Proof. Here are the first three columns. Note the “alternating scheme” for listing
all of the joint true/false possiblities.

©2021-2022, John M. Morrison 5

4 ASSOCIATING AND DISTRIBUTING

P Q R
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Now let us get the truth-values for (P ∨Q) ∨R.

P Q R P ∨Q (P ∨Q) ∨R
T T T T T
T T F T T
T F T T T
T F F T T
F T T T T
F T F T T
F F T F T
F F F F F

This shows us that (P ∨Q)∨R is true exactly when at least one of P , Q, or
R is true. Since (P ∨Q)∨R ⇐⇒ R∨ (P ∨Q), we see that (P ∨Q)∨R is true
when at least one of R, P or Q is true. Our result follows immediately.

Exercise Write a similar proof to show that ∧ is associative.

Theorem 4. If P , Q, and R are propositions, then

P ∨ (Q ∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R).

Proof. Begin by constructing a a table for P ∨ (Q ∧R)

P Q R Q ∧R P ∨ (Q ∧R)
T T T T T
T T F F T
T F T F T
T F F F T
F T T T T
F T F F F
F F T F F
F F F F F

Now let us construct a table for (P ∨Q) ∧ (P ∨R).

©2021-2022, John M. Morrison 6

5 QUANTIFIERS

P Q R P ∨Q P ∨R (P ∨Q) ∧ (P ∨R)
T T T T T T
T T F T T T
T F T T T T
T F F T T T
F T T T T T
F T F T F F
F F T F T F
F F F F F F

The last columns in the two tables match, so our result follows.

5 Quantifiers

Two quantifiers exist in logic, the universal quantifier ∀ and the existential
quantifer ∃. You read ∀ as “For all...” and ∃ as “There exists... ” ’ or “There is...
”

Mathematical conditions are rife with quantifiers. Here is a simple example.

∀x ∈ Z, x < x+ 1.

This proposition is true becuase if you add 1 to any integer, that integer becomes
larger. Quantifiers can be used to establish context in a discussion.

Context, in fact, is vital because no meaningful discussion can occur until a
context for it exists. This fact is a consequence of Russel’s paradox.

Notice that the universal quantifier is an extension of the notion of “or,” and
that the existential quantifier is a generalization of “and.”

Suppose we have the proposition ∀xP (x), where P is some boolean-valued
expression in x. How do we negate it? All we need is one x for which P (x)
is false and we are done. And that proposition is ∃x¬P (x). Informally, youm
can move the negation inside to the predicate if you “flip” the quantifier from
universal to existential. We have this tautology.

¬∀xP (x) ⇐⇒ ∃x¬P (x).

A similar sort of thing occurs with the existential quantifier. We have

¬∃xP (x) ⇐⇒ ∀x¬P (x).

Think about this for a moment and you will see why it works.

©2021-2022, John M. Morrison 7

6 SETS

6 Sets

In mathematics, you often deal with collections of objects. The most funda-
mental collection in mathematics is the set. You can go into the tall weeds and
get lost in the vagaries of axiomatic set theory. This gets complicated and it’s
probably a wee bit abstruse for this leel. We will approach set theory naively.

Every meaningful discussion requires a context in which it can occur. In set
theory we do this by specifying a universe of discourse, which is customarily
represented by the Greek letter Ω. Even in the finite world of computer science,
such a universe can be infinite. For example, the set of all characters sequences
(strings) is infinite. What you can hold in a computer’s memory is not.

Sets are defined by the primitive notion of membership. We write x ∈ A to
indicate that the item x is a member of the set A. To negate this statement,
we write x ̸∈ A. By convention a universe of discourse Ω will be present. Often
Ω will be specifed explicitly.

For now let us take Ω to be the integers. One way to specify a set is to make
an explicit list like so A = {1, 5,−3, 9, 14}. We see that 1 ∈ A but 42 ̸∈ A.
Another ways is to use a predicate as we see here,

B = {x ∈ Z|2 | x},

where 2 | x is the predicate that asserts that 2 divides into x evenly. This is the
set of all even numbers. Some authors call this set builder notation.

For a set A in a universe of discourse Ω we define the complement of A by

Ac = {x ∈ Ω|x ̸∈ A}.

The complement operator is a unary operator. You can easily see that x ∈
Ac ⇐⇒ ¬x ∈ A.

If A and B are sets in a universe of discourse Ω, we say that A is a subset
of B if ∀x ∈ A, x ∈ B. Equiv:alently we can say ∀x ∈ Ω, x ∈ A =⇒ x ∈ B. For
this situation, we write A ⊆ B.

The sets A and B are said to be equal if A ⊆ B and B ⊆ A. Two sets are
equal if they contain the same elements.

Note! If you make a set with a list, and put a duplicate element in it, that
duplicate is ignored. For exaple, you have

{1, 2, 3} = {1, 2, 2, 3, 3, 3},

because both sets contain 1, 2, and 3 and no other elements.

There is a variant on set called multiset, which allows for duplicate entries.
In that case, two multisets are equal if they are equal as sets and all items in
the two sets have the same multiplicities.

©2021-2022, John M. Morrison 8

6 SETS

A set with no elements called an empty set. In fact,there is only one empty
set. Here is why. Supposei there are two empty sets E an F and that x ∈ E.
Since an empty set is devoid of elements, this statment is false. A fals statement
implies anything so this statment implies x ∈ F . We have E ⊆ F . By symmetry,
F ⊆ E, so E = F .

We shall denote the empty set by ∅. By this same turn of logic, the empty
set is a subset of every set. So if A is a set in a universe of discourse Ω we are
guaranteed that ∅ ⊆ A ⊆ Ω.

Exercises

1. Show that if A and B are sets in a universe of discourse Ω,

A ⊆ B ⇐⇒ Bc ⊆ Ac.

2. If A is a set in a unverse of discourse Ω, show Acc = A.

There are two infix binary operators on sets. The union of sets A and B is
defined to be

A ∪B = {x ∈ Ω|x ∈ A ∨ x ∈ B}.

This is the set of all elements of the two sets combined. The intersection of two
sets is the set of all elements common to both. We define it as follows

A ∩B = {x ∈ Ω|x ∈ A ∧ x ∈ B}.

We say A and B are disjoint if A ∩B = ∅.

Exercises

1. Show that if A and B are sets that A and B are disjoint if and only if
A ⊆ Bc.

2. Show that union and intersection are commutative.

3. Show that union and intersection are associative.

4. Show that (A ∪B)c = Ac ∩Bc.

5. Show that (A ∩B)c = Ac ∪Bc.

6. Show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

7. Show that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

The relative complement or difference of two sets A and B, A−B is defined
to be A ∩Bc. Note that we have the equality

A−B = {x ∈ A|x ̸∈ B}.

©2021-2022, John M. Morrison 9

7 RELATIONS

7 Relations

Relations on sets allow us to do two imporant things. They give us an apparatus
for “lumping together” parts of sets and declaring them equivalent. They are
also imporant for creating orders on objects, so they become sortable. You will
see that this is a fundamental tool in the mathematican’s bag o’ tricks.

If A and B are sets we define the cartesian product of A and B by

A×B = {(a, b), a ∈ A,B ∈ B}.

The cartesian product is just the set of ordered pairs from the two factor-sets.
A relation ∼ on a set S is a subset of S × S.

It is common convention to use infix notation for relations. We write x ∼ y
for (x, y) ∈∼, and we say “x is related to y.” Now let us introduce a little
taxonomy.

• A relation is reflexive if every element is related to itself.

• A relation is irreflexive if no element is related to itself.

• The relation R on the set S is symmetric if ∀x, y ∈ S, x ∼ y =⇒ y ∼ x

• The relation R on the set S is asymmetric if ∀x, y ∈ S, x ∼ y =⇒ ¬y ∼ x

• The relation R on the set S is asymmetric if ∀x, y ∈ Sx ∼ y ∧ y ∼ x =⇒
x = y

• The relation R on the set S is transitive if ∀x, y, z ∈ S, x ∼ y ∧ y ∼ z =⇒
x ∼ z

7.1 Equivalences and Equivalence Classes

A relation on a set is an equivalence relation if it is reflexive, symmetric, and
transitive.

Suppose that S is a set and that ≈ is and equivalence relation on S. We
define the equivalence class of x to be

[x] = {y ∈ S|x ≈ y}.

Theorem 5. Any two equivalence classes on a set are either equal or disjoint.

Proof. Suppose that S is a set and that ≈ is and equivalence relation on S.
Choose a, b ∈ S. Suppose that [a] ∩ [b] is nonempty; choose an element c from
it. Since c ∈ [a], c ≈ a. Since c ∈ [b], c ≈ b. By symmetry, we have a ≈ c.
Now c ≈ b so we can invoke transitivity to see that a ≈ b. By transitivity, any
element equivalent to a is also equivalent to b, so [a] ⊆ [b].

By an identical argument, we can see that [b] ⊆ [a].

©2021-2022, John M. Morrison 10

7.2 Ordering Relations 8 FUNCTIONS

As a result, the equivalence classes on a set partition the set into disjoint
pieces. A converse also holds: if you partition a set into disjoint pieces and
declare two elements related if they reside on the same piece, then the result is
an equivalence relation If ∼ is an equivalence on a set S, we denote by X/ ∼
the set of all equivalence classes on X.

7.2 Ordering Relations

These come in two flavors, non-strict and strict. Both types are transitive. A
parial order is strict if it is asymmetric, transitive, and irreflexive. An example
of this is the usual < on numbers. A partial order is non-strict if it is anti-
symmetric, reflexive, and transtive. Or old friend ≤ on numbers is a non-strict
partial order.

A partial order ∼ on a set Sis a linear order if

∀x, y ∈ S, (x ∼ y) ∨ (y ∼ x) ∨ (x = y).

to wit, a partial order is a linear order if every pair of nonequal elements is
comparable in the order.

Sets that are linearly ordered are sortable. This notion is very useful in
computing.

Exercises

1. If ∼ is a strict partial order, define a new relation ≈ by x ≈ y ⇐⇒ (x ∼
y) ∨ (x = y). Show this is a non-strict partial order.

2. If ≈ is a non-strict partial order, define a relation ∼ by

x ∼ y ⇐⇒ (x ≈ y) ∧ (x ̸= y).

Show this is a strict partial order.

3. Suppose an order is transitive and symmetric. Find the flaw in this ar-
gument puporting to show it is an equivalence. Choose any x ∈ S and a
y ∈ S so y ∼ x Since the order is symmetric, we have x ∼ y. So, with
x ∼ y and y ∼ x, we conclude that x ∼ x. The order is reflexive, and is
therefore an equivalence.

8 Functions

Let A and B be sets. A function f : A → B is a rule that associates with eah
a ∈ A some f(a) ∈ B. The set A is called the domain of the function and the

©2021-2022, John M. Morrison 11

8 FUNCTIONS

set B is called the codomain. Hence, to completely specify a function, you must
specify three things: domain, codomain, and rule.

In mathematical parlance, it is common to speak of “the function f(x) = x2.”
Tactly, the math people are taking the domain and codomain of f to be the real
numbers.

Here is an example of a function commonly seen in computing. Let A denote
the set of all character strings. We can define a function len : A → N0 by taking
len(s) to be the number of characters in s.

Note to Computer Scientists A function in a program is only a function
in this sense if it has no side-effects and if it is consistent; i.e. the same input
produces the same output very time. For example, a function that generates a
pseudorandom number does not meet the criterion of consistency. Programming
functions that are also mathematical functions are often referred to as pure
functions. The string-length example we just gave is a pure function.

The use of pure functions is very desirable in writing programs, since these
function are both easy to test and they do not interfere with each others’ internal
mechanisms.

There are two important properties of function we are going to focus on. A
function f : A → B is said to be 1-1 or injective if ∀x, y ∈ A, f(x) = f(y) =⇒
x = y. By the contrapositive, this is equivalent to saying that distinct domain
values are associated via f with distinct values in the codomain.

A function f : A → B is said to be 1-1 or surjective or onto if ∀y ∈ B∃x ∈ A
with f(x) = y. This says that every value in B is associated with some value in
A.

A function that is 1-1 and onto is said to be bijective.

These notions of injectivity and surjectivity depend upon the domain and
codomain specified for the function. Suppose you have the rule f(x) = x2.
If both the domain and range are real numbers, then f is not 1-1 because
f(1) = f(−1) = 1. It is not onto because there is no real number whose square
is −1.

However, we cut the domain and codomain down to the nonnegative num-
bers, f is both 1-1 and onto.

The function len we discussed earlier is onto because you can create a charac-
ter string of any length you wish. For example len(“aaaaaaaaaa”) = 10. However,
it is clear that it is not injective since len(“a”) = len(“b”) = 1.

Exercises

1. Consider the function that has as domain and range all character strings

©2021-2022, John M. Morrison 12

9 COMPOSITION OF FUNCTIONS

and which associates each string with a an upper cased verison of itself (
“abc123” 7→ “ABC123”). Is it 1-1? Onto?

2. What domain and codomain can you give the tangent function so it is 1-1
and onto?

3. Consider the folowoing definition. For n ∈ N define f(n) = 2n+1+f(n−1)
for n > 1 and f(0) = 0. Is this function defined for all integers n ≥ 0?
Compute a short table of values and see if you can write an explicit formula
in n for it.

9 Composition of Functions

Suppose that A, B and C are sets and that f : A → B and g → C are functions.
We define the function g◦f : A → C by g◦f(a) = g(f(a)), a ∈ A. This operation
◦ is called functional compsition.

This operation is not commutative. To see this define for a real number x,
f(x) = x2 and g(x) = x + 1. Then f ◦ g(x) = (x + 1)2 and g ◦ f(x) = x2 + 1
for all real x. They fail to be equal for “nearly all” values of x. (Where are they
equal?)

It is, however, associative. The expressions (h ◦ g) ◦ f and h ◦ (g ◦ f) just
amount to applying f , then g then h in succession.

Exercises Suppose that A, B and C are sets and that f : A → B and g :
B → C. are functions.

1. Show that if f and g are 1-1 then g ◦ f is 1-1.

2. Show that if f and g are onto then g ◦ f is onto.

3. Define a relation ∼f on A by a0 ∼f a1 if f(a0) = f(a1). Show this is an
equivalence relation on A.

4. We define the canonical projection πA(a, b) = a for a ∈ A. Show that this
is onto. Under what condition is it 1-1?

©2021-2022, John M. Morrison 13

	Introduction
	Predicates and Boolean Operations
	Logical Connectives
	Tautologies
	Associating and Distributing
	Quantifiers
	Sets
	Relations
	Equivalences and Equivalence Classes
	Ordering Relations

	Functions
	Composition of Functions

