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0 Numbers and their Representation

Suppose we have two finite collections of objects A and B. What does it mean
for them to have ”the same number of elements?” Can we determine this without
counting them? The answer to this question is, “yes.” The test works as follows.
Pair one element from each set until you have no leftovers in one of the sets.
If the other has no elements too, the sets have the same size. This is called
creating a one-to-one correspondence or a bijection between the two sets. We
say that such sets have the same number of elements.

We see that we can do this with any two finite sets of items. This is the
basis for the idea of number. We declare two sets to be “of the same size” if
they pass this test of having a one-to-one correspondence between them.

Separate from this is the process of representing numbers with symbols. Let
us discuss several ways of representing numbers. The simplest is just with tally
marks. You make one tally mark for each item present. To count the number
of eggs in a standard carton, you would make the symbol

IIIIIIIIIIII
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These symbols have some advantages. Addition is easy. Just glue together
(concatenate) the globs of Is. It is pretty easy to multiply too. If you think for a
minute or two, you can devise a very simple scheme for doing this. However, the
tally system rapidly becomes cumbersome if you want to keep track of hundreds
of items. It is simple but bulky, error-prone and cumbersome. It would work
for a pre-agricultural society that only keeps track of a few things at a time.

Project Write a short manual for doing arithmetic with tally marks. Be aware
that there is no notion of zero and there are no negative numbers so an operation
such as II - IIII is not defined.

Tell how to add, subtract (where allowed), and multiply numbers using tally
marks.

Let us now add two new operations. The operation of integer division

consists of dividing and discarding the remainder. We represent this with //.
For example, in decimal numbers 5//2 = 1.

The other operation is called modulus and it is represented with %. The
expression b % a is evaluated by dividing a into b and computing the remainder.
Example: 5 % 2 = 1.

Tell how to do these in tally marks as well. Your explanation should pass
the Man on the Moon Test : The man on the moon is reasonably intelligent but
he does not know how do do your specific procedure. Explain it to him in such
a way that he can read your little article and carry out the procedures in it
without asking you questions.

This is the same standard you use for writing out procedure in a standard
science lab report.

1 Denominational Numbering Systems

Why don’t we use tally marks if the arithmetic is so simple? We could add
zero and we could even add signed numbers. These would not cure the pri-
mary drawback of the system: representing large numbers is very cumbersome.
Imagine representing the number 300 with tally marks. It looks like this

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

You cannot tell “at a glance” what number this is. But you can in our
numbering system. So the next step is to create symbols for groups of tally
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marks. The Romans did this; such a system is called a denominational number
system. They had the alphabet {I, V, X, L, C, D, M} of symbols and gave
them numerical values. These represent, respectively, the values 1, 5, 10, 50,
100, 500, and 1000 in our number system. For example, the number 300 is
represented in Roman numerals by CCC. Each C is “worth” 100 tally marks.

In addition, They also used a borrowing convention. For example, to repre-
sent the number 9, they used IX (borrow 1 from 10). Arithmetic in this system
is pretty clunky. With a little imagination, you can figure out how to add and
multiply. If you think that the borrowing procedure you learned from Miss
Wormwood is annoying, think about borrowing with Roman numerals.

The Mayans created a denominational number system based on the numbers
1, 5, and 20. The numbers 1–4 are represented by a row with that number of
dots. A 5 is represented by a horizontal bar. The numbers 6–9 are represented by
a bar (5) underneath an appropriate number of dots. Then 10 is two horizontal
bars. Bars are stacked and dots are put on top to represent numbers less than
20. The Mayans had a zero too; it looked a little like a football. You can see
more detail here [1].

Notice that modern currencies use a denominational number system, so you
do not have to carry a Kansas City roll of bills to pay for things.
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Exercises

1. Convert the Roman Numeral MCMLVII to a decimal number.

2. Convert the number 4096 to a Roman Numeral.

3. Convert your birth year and this year into Roman Numerals. See if you can
subtract them directly using only Roman numerals and get your correct
age.

4. Write a procedure to decide if a string of characters is a valid Roman
numeral.

5. Write down an procedure that tells how to count out n dollars using as few
bills as possible. Remember US currency comes in these denominations:
1,2,5, 10, 20, 50, and 100. See if you can describe it in everyday English
in a very simple way.

6. The method you just created would be described as “greedy.” Why?

7. This one is very important! Imagine you are in the land of Binaria
where currency is called a bit and it comes in an infinite number of de-
nominations that are powers of two. What is a recipe for counting out n
bits using as few bills as possible? Do you ever use more than one bill of
any given denomination?

Notes

1. The article [2] discusses the history of our modern numbering system.

2. The article [3] discusses the history of numeration systems and gives a
nice bibliography of further references.

2 Base Numbering Systems

First, it’s time for a trip back to grade school to remember how we parse, or
impose meaning upon, our familiar decimal numbering system. When you see
the number 256, you do not read it as a sequence of characters 2, 5, 6; it is
something more. The decimal numbering system is based on place value; a
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digit’s place in a number determines its contribution to the whole number. The
number 256 is a token because it is an atom of meaning: If we break it into
smaller pieces, such as 25 and 6, it loses its original meaning.

When we see 256, we learned in grade school that the 6 is in the “ones place”,
the 5 is in the “tens place” and the 2 is in the “hundreds place.” To wit,

256 = 6 + 5 ∗ 10 + 2 ∗ 100.

When reading a number, the last digit has place value one. As you move to the
left, the place value of a given digit’s value goes up by a factor of 10. This is
the familiar decimal system of numbers.

Why 10? The answer is simple: humans have 10 fingers so the number 10 is
a basic unit of counting. The number 10 is called the base of our numbering
system. The alphabet of our numbering system consists of the digits 0-9. You
can learn about the history and origins of this alphabet of symbols in this article
[2].

What is interesting to note is that there is nothing special about 10. You
could use any positive integer larger than 1 as a base and arithmetic works in a
manner entirely similar to that of decimal arithmetic.

Money! A base numbering system is actually a denominational numbering
system that has an infinity of denominations: these are just powers of the base.
Let us see how this works. Suppose we want to convert the number 257 to base
3.

Our “currency” comes in denominations 1, 3, 9 27, 81, 243, 729,. . . What we
do is get greedy and choose the largest bill we can use first and use as many
of them as we can. In that case, it’s 243 and we can use one. Subtracting, we
have 14 left to count out. This means that 81 and 27 are no good, so we go to
9 and use one of those. That leaves us 4 to count out. We can do that with a 3
and two 1s. Now we make this little table that shows us how many of each bill
we used.

243 1
81 0
27 0
9 1
3 1
1 2

Read down the second column and you can see the base 3 representation for
the number 257. So 257 = 1001123. Observe that at any step, you never use
more than two of these “bills.”
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There is nothing special about 3; this greedy method works for any base.
This procedure is greedy in this sense: Start using the largest bill possible and
use as many of them as you can. Keep doing this until you have counted out
the amount.

The greedy method is an example of a precise procedure for carrying out a
computational task. Such procedures are called algorithms. You can think of
an algorithm as a precise computational recipe. Algorithms need to have these
three characteristics to work correctly.

• Repeatability The instructions you furnish must be precise and the user
must be able to carry them out without your intervention. Note that
this user might be an unthinking machine! You must also tell what the
allowable inputs and expected outputs are.

• Finite Resource Restriction You may only use a finite amount of mem-
ory (which can be paper) to store data. Each datum only has a finite size.

• Termination Condition The algorithm must halt after a finite number
of steps.

Even with its very simple formulation the greedy algorithm meets these three
requirements. The greedy algorithm for base conversion works for any base.

3 Time for a Powerful Observation

One disadvantage to binary numbers is that they get big fast. For example
the number of feet in a mile is 5280. In binary this is 0b1010010100000. Now
a computer does not care about this clunkiness but humans do. The decimal
representation has the advantage of being shorter. The fly in the proverbial
ointment is that it takes some work to convert back and forth. So, here is the
lurking question: Can we find a way to compactly represent binary numbers
so it is easy to convert them back to binary?

That is what we set out to do here. We are going to take a look at three
number bases, 4, 8, and 16. Let us take the number 1225 and convert it to
each base. One problem we have is that we only have the alphabet of digits 0-9
and, if we wish to use 16 as a base, we must extend this to an alphabet of 16
symbols. We take the cheap way out; the alphabet for base 16 is {0, 1, 2, 3,

4, 5, 6, 7, 8, 9, A, B, C, D, E, F}. We let A be the symbol for 10, B be
the symbol for 11, etc. Let us begin with base 2. We organize this into a little
table. Column 1 is the denominations, Column 2 is how many you use of the
denominations, Column 3 is what’s left to count out.

6



bill number left
1024 1 201
512 0 201
256 0 201
128 1 71
64 1 7
32 0 7
16 0 7
8 0 7
4 1 3
2 1 1
1 1 0

We have 1225 = 0b10011001001.

Next, let’s try this with 4

bill number left
1024 1 201
256 0 201
64 3 9
16 0 9
4 2 1
1 1 0

We have 1225 = 1030214. Look at the base-4 digits and their binary represen-
tations

0 1 2 3
00 01 10 11

There are four base-4 digits and four possible combinations of two bits. This is
no accident. Each base-4 digit translates into a block of two bits. Now check
this out. Translate each digit of the base-4 representation of 1225 into a two-bit
block.

1 0 3 0 2 1

01 00 11 00 10 01

Now glue those blocks together and trim off any lead 0s.

1 0 3 0 2 1

01 00 11 00 10 01

010011001001 -> 10011001001
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BAM! This representation is half as long as its binary sibling. Now let’s try
this with 8. First calculate the base-8 representation of 1225 directly using the
greedy algorithm.

bill number left
512 2 201
64 3 9
8 1 1
1 1 0

We have 1225 = 23118, where the subscript indicates this is a base-8 number.
Before we go any further, let us make a side-by-side comparison. Now let us
attempt to turn the same crank as we did for base 4. To do this, realize that
every base-8 digit turns into a block of three binary digits.

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

We forge ahead and try the same trick.

2 3 1 1

001 011 001 001 -> 1011001001

Et voila! It all works becasue 22 = 4 and 23 = 8.

This is the the packing-unpacking algorithm. Happily, since 24 = 16, every
base-16 digit unpacks into four bits. This table tells all.

0 1 2 3 4 5 6 7
0000 0001 0010 0011 0100 0101 0110 0111
8 9 A B C D E F
1000 1001 1010 1011 1100 1101 1110 1111

We use the term hexadecimal for base 16 numbers, or “hex” for short. We use
the term octal for base-8 numbers. Octal numbers are designated on computers
with the prefix 0o and hex numbers are designated by 0x.

Hex numbers are extremly common in computing. You will see the when
you learn about colors and how they are represeneted in a computer. You will
also see them if you are discussing memory addresses.

Exercises

1. See if you can complete this table. If you can, you have this business well
at hand.
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binary base4 octal decimal hex
0b11101101

212304
0o1236

233
0xA51

2. Write down an algorithm for translationg a hex number to decimal. Is
there more than one way?

3. Fill in the blanks. Each question mark stands for a single digit.

0x?4 = 124?55.

4. How can you use % to obtain the last digit of a number in any base?

5. 4. A Balanced Ternary Expansion It is possible to uniquely write any
integer in an expansion of the form

e0 + 3e1 + 32e2 + · · ·+ 3nen,

where each of the ek are 0, 1 or -1. Find such an expansion for each of
the folllowing numbers: 5, 13, 37 and 79. Can you describe an algorithm
for doing this in general?
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