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0 The Nonnegative Integers

Here is our starting point in the numerical world. We begin with the most basic
mathematical activity, counting. We will denote by N the set of all positive
integers and use the notaton N0 for the set of all nonnegative integers.

We shall not repeat Peano’s construction of the positive integers here. We
will begin with the notion of mathematical induction. This says the following.
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0 THE NONNEGATIVE INTEGERS

Induction Let S be a subset of the positive integers such that 1 ∈ S and that
for all n ∈ N, n ∈ S =⇒ n+ 1 ∈ S. Then S = N.

This principle is a workhorse tool for proving results about the positive
integers. Here is an example of a proof done using induction.

Theorem 1. For any positive integer n,

n∑
k=1

k =
n(n+ 1)

2
.

Proof. Let S denote the set of all positive integers for which this predicate holds.
We begin by checking if 1 ∈ S. We know that

1∑
k=1

k = 1

and
1(1 + 1)

2
= 1,

so we have that case covered.

Now assume that n ∈ S. This tells us that
n∑

k=1

k =
n(n+ 1)

2
.

Adding n + 1 to both sides of this equation, we see the following

n+1∑
k=1

k = n+ 1 +

n∑
k=1

k = n+ 1 +
n(n+ 1)

2
.

Now clean up the right-hand side to see that

n+ 1 +
n(n+ 1)

2
=

2(n+ 1) + n(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

It immediately follows that n+ 1 ∈ S, so by induction S = N.

Now for some post-proof commentary. Checking the case of n = 1 is often
called checking the base case. Checking base cases is an essential part of an
induction argument.

Then comes the “induction step.” You assume as given that the theorem
holds for n and you use it, along with other arguments, to show that the theorem
holds for n+ 1.

On the Math Stackexchange, this question was asked, “What is the purpose
of the first test in an inductive proof?” Here is my answer to that inquiry.
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0 THE NONNEGATIVE INTEGERS

Imagine a pond with an infinite linear progression of lily pads. You
have a frog who, if he hops on one pad, he is guaranteed to hop on
the next one. If he hops on the first pad, he’ll visit them all. But if
he never makes the first lily pad, all bets are off.

One other remark is in order here. There is nothing special abut 1 as the
base case of induction. If you can do the induction step, and if, say, you can
prove your assertion for n = 3, then induction gives you the result for n ≥ 3.
Why? Think about Mr. Frog. If he appears on pad 3, he will visit all of the
pads after 3.

You will also notice some legerdemain with sigma notation. These identities
are often very useful.

n∑
k=1

ak = an +

n−1∑
k=1

ak = a1 +

n∑
k=1

ak.

They hold because all three items in the inequality represent the sum of the ak,
1 ≤ k ≤ n.

Exercises

1. Show that for an integer n ≥ 1,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

2. Show that for an integer n ≥ 1,

n∑
k=0

λk =
1− λn+1

1− λ
.

for any λ 6= 1.

3. Prove the telescoping sum principle, which says for any integer n ≥ 1,∑
k=1

nak − ak−1 = an − a0,

for any numbers a0, a1, · · · an.

Induction has a couple of other guises which we will now discuss. One of
these is the well ordering principle. This simply states that every nonvoid subset
of the positive integers has a least element. We can prove this with induction.

Theorem 2 (Well Ordering Principle). Every nonvoid subset of the positive
integers has a least element.
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1 DIVISIBILITY OF INTEGERS

Proof. We argue via the contrapositive. Let S be a subset of the integers with
no least element and denote by T all elements of N not in S. Were 1 ∈ S, then
1 would be the least element of S, so we know that 1 ∈ T.

Let us assume all integers less than or equal to n are in T . Then k 6∈ S,
1 ≤ k ≤ n. Were n+ 1 ∈ S, n+ 1 would necessarily be the least element of S;
we must have n+ 1 ∈ T .

By induction, T = N,, so S is an empty set. We just showed that the only
subset of the positive integers lacking a least element is the null set, proving the
theorem.

Embedded in this proof is a second version of induction called strong
induction.

Strong Induction Let S be a set of positive integers so that 1 ∈ S and so
{1, 2, 3, 4, ..n} ⊆ S =⇒ n+ 1 ∈ S. Then S = N.

This can be proved using plain-vanilla induction. It is sometimes a useful
way to formulate an induction proof.

Now let us show an application of the well-ordering principle. We say that
a positive integer n ≥ 2 is prime if its only divisors are 1 and itself.

Theorem 3. Every positive integer can be written as a product of zero or more
primes

Proof. Note that 1 is the product of an the empty set, so it is the product of no
primes.

We argue by the contrapositive. Let S be the set of all integers not repre-
sentable as a product of primes. Were S nonvoid, it would have a least element
n. If n were prime, than n is the product of the collection containing itself.
Hence, n is not prime.

As a result, we can write n = ab, where a and b are divisors of n and a, b ≥ 2.
Each of the two factors are finite products of primes, so n must also be a finite
product of primes. Therefore n 6∈ S, a contradiction. The set S has no least
element and is therefore void.

1 Divisibility of Integers

We begin by establishing some definitions and basic results. We will see that
the well-ordering principle is hugely useful here. We will use the notation Z to
denote the set of all integers.
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1 DIVISIBILITY OF INTEGERS

You might ask, why not use the letter I? This notation was confected by
a German-speaking mathematician, and the German word zahlen means, “to
count.”

If a and b are integers, we will say that a divides b if for some integer q, we
have b = aq. For this, we will use the standard notation a | b.The integer q is
the quotient of b by a. In this case we say that a and q are divisors of b.

Theorem 4. Suppose d, a, b, x, y are integers and d 6= 0. The following hold

1. If d | a and d | b, then d | ax+ by.

2. If d | a, d | −a and d | |a|.
3. If d | a and a | d, then a = ±d.
4. d | 0.
5. 1 | a.

We will now establish the famed Divison Algorithm.

Theorem 5. Suppose that a ∈ N b ∈ Z Then there exist unique integers q and
r so that b = aq + r and 0 ≤ r < a.

Proof. Put R = {b− an|n ∈ Z, b− an ≥ 0}. Let us begin by showing that R is
nonvoid. Put n = −|b|. Then b − an = b + a|b| ≥ b + |b| ≥ 0. We see that R
is nonvoid. By well ordering, it has a least nonnegative element, which we will
call r. Also, we can write r = b− aq for some integer q. We see that b = aq+ r.

Next we show that r < a. Suppose by way of contradiction this is not true.
Then a ≥ r, so r − a ≥ 0. But we have r − a = b − aq − a = b − a(q + 1). We
just showed that r−a ∈ R, a contradiction of the minimality of r. We conclude
r < a. This establishes existence.

Now for uniqueness. Write b = aq + r = aq′ + r′, where 0 ≤ r, r′ < a. Then
r− r′ = a(q− q′), so a | r− r′ and therefore a | |r− r′| < r. This can only occur
if r = r′ Since r = r′, we can conclude q = q′.

Exercises

1. Prove the first theorem.

2. Show that if d | a and a, d > 0 then 0 < d ≤ a.

The Division algoritm allows us to define a new function mod which we
will represent as an infix binary operator. If b = aq + r and 0 ≤ r < a, then we
write b mod a = r. Modern computer languages bake this in as a fundamental
arithmetic operation. A common notation you will see for it is b % a.
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2 THE GCD FUNCTION

2 The gcd Function

Suppose a and b are integers. The nonzero integer d is a common divisor of a
and b if d | a and d | b. Every nonzero integer has only finitely many divisors,
so the common divisors of a and b constitute a finite set. It is a nonvoid set
because 1 is a common divisor of a and b. Hence, there is a greatest common
divisor of any two integers, provided at least one of the integers is not zero.

What about gcd(0,0)? Any integer divides zero, so there clearly cannot be
a greatest one.

The domain of the gcd function is the set of all pairs of integers with at least
one member of the pair not being 0.

Let us state a basic result and leave the proof as an exercise.

Theorem 6. 1. For an integer a, gcd(a, 0) = |a|.
2. For integers a and b, gcd(a, b) = gcd(b, a).

3. For integers a and b, gcd(a,−b) = gcd(a, b) = gcd(|a|, |b|). To wit, the gcd
function cares nothing about the signs of its arguments.

We are going to develop an apparatus for computing greatest commond
divisors that is fast and efficient. You are encouraged to try to implment this
in code.

Lemma 1. Suppose that a, b, q, and r are integers and that b = aq + r. Then
gcd(a, b) = gcd(a, r).

Proof. Suppose d is a common divisor of a and b. Then d | a and d | b, so
d | b−aq = r. Every common divisor of a and b is a common divisor of a and r.

Conversely, suppose d | a and d | r. Then d | aq + r = b. Every common
divisor of a and r is a common divisor of a and b. Hence, gcd(a, b) = gcd(a, r).

Note that the q and r are not necessrily the ones yielded up by the division
algorithm, but those are ofen a very good choice. So we have this identity

gcd(a, b) = gcd(a, b mod a).

Repeated application of this result is called Euclid’s Algorithm. Here we will
compute gcd(9995, 2172) in a Python interactive session. Note that % is the
mod operator in Python.

>>> a = 9955
>>> b = 2172
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3 THE FUNDAMENTAL THEOREM OF ARITHMETIC

>>> a % b
1267
>>> 2172 %1267
905
>>> 1267%905
362
>>> 905 % 362
181
>>> 362 % 181
0

What we can glean here is this chain of equalities.

gcd(9955, 2172) = gcd(2172, 1267) = gcd(1267, 905)

= gcd(905, 362) = gcd(362, 181 = gcd(181, 0).

The result is gcd(9955, 2172) = 181.

3 The Fundamental Theorem of Arithmetic

We shall develop the machinery necessary to show tht every positive integer is
uniquely factorable into a finite product of prime numbers. What we know now
is existence: Every positive integer is a product of a finite number of primes.

Lemma 2. Suppose that d is a common divisor of a and b. Then gcd(a, b) | d.

Proof. Write ds = a, dt = b.

To make this happen we begin by making an appeal to the well ordering
property.

Theorem 7 (Bezout). Suppose that a, b ∈ Z and that at least one of these
integers is not zero. Then there exist integers x and y so that

ax+ by = gcd(x, y).

Proof. Put S = {ax + by|x, y ∈ Z, ax + by > 0}. It is easy to check that note
that without loss of generality, we can assume both a and b are nonnegative by
pushing the negative onto the coefficents x and y.

This is a nonvoid subset of the integers; therefore it has a least element
which we will name d. Note that since d is an “integer combination” of a and b,
gcd(a, b) | d. We choose the names x and y for our coefficients, so ax+ by = d.

Now write d = aq + r, where 0 ≤ r < a. If r = 0, then d|a. By way of
contradiction, assume not. Then r = d − aq = ax + by − aq = a(x − q) + by.
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4 MODULAR ARITHMETIC

Since r > 0, we must have r ∈ S, contradicting the minimality of r. Therefore
r = 0, so d | a. By symmetry, d | b. We know that d is a common divisor of a
and b, so d ≤ gcd(a, b). But gcd(a, b) | d, so gcd(a, b) ≤ d, proving our result

Corollary 1. If gcd(a, b) = 1 then there are integers x and y so that ax+by = 1.

We will say that integers a and b are relatively prime if gcd(a, b) = 1. This
theorem is extremely useful when thinking about prime factorization.

Theorem 8. Suppose that p is prime and that p | ab. Then p | a or p | b.

Proof. Assume that p - a. Since the only divisors of p are 1 and p, gcd(a, p) = 1.
Write ax+ py = 1. Now multiply by b and we see that

b = axb+ bpy

Since p | ab and p | bpy, p | b.

Corollary 2. If a prime divides a finite product of integers, it must divide at
least one of the integers.

Proof. This is an exercise in induction.

4 Modular Arithmetic

Let n be a positive integer. We define the relation a ≡ b mod n on Z to be
true when d | a− b. The integer n is called the modulus.

This relation is an equivalence on the integers. It is reflexive because any
integer divides 0. Suppose a ≡ b mod n. Then d | a − b, so d | b − a; we
conclude that b ≡ a mod n. The relation is symmetric. Now if we have a ≡ b
mod n and b ≡ c mod n, d | a− b and d|b− c. Adding we see that d | a− c, so
a ≡ c mod n. The relation is transitive and is therefore an equivalence.

If a ≡ b mod n, we say that a and b are equivalent mod n.

We denote by mathbbZ/nZ the equivalence classes on Z under equivalence
mod n.

Theorem 9. Suppose that a0, a1, b0 and b1 are integers, n ∈ N, and that
a0 ≡ b0 mod n an d a1 ≡ b1 mod n. Then the following hold.

1. a0 + b0 ≡ a1 + b1 mod n

2. a0b0 ≡ a1b1 mod n

©2021-2022, John M. Morrison 8



4 MODULAR ARITHMETIC

Proof. The first assertion is done by addition. We have d | a0−b0 and d | a1−b1.
Consequently,

d | a0 − b0 + a1 − b1 = (a0 + b0)− (a1 + b1),

so
a0 + b0 ≡ a1 + b1 mod n

.

Now let us get the second assertion. Since d | a1 − a0, d | a1b0 − a0b0. Since
d | b1 − b0, d | a1b0 − a1b1. By addition, we have

d | a0b0 − a1b1.

We can now do arithmetic on Z/nZ. We denote by [a] the equivaence class
of a mod n. We can define

[a] + [b] = [a+ b].

Why can we get away with this? Select α ∈ [a] and β ∈ [b]. Then α ≡ a mod n
and β ≡ b mod n. By the teorme, α+ β ≡ a+ b mod n.

A similar analysis (exercise) shows that we can define

[a][b] = [ab].

Suppose a ∈ Z and n ∈ N. Then we can write b = nq + r, where 0 ≤ r < n.
Observe that [b] = [r]. Therefore

Z/nZ = {[k]|0 ≤ k < n}.

Let us look at Z/6Z. In the interest of typographical simplicity we write 1
instead of [1]. Here is an addition table.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Notice that every element has an additive inverese. For 0 < k < 6, you have
[6− k] + [k] = 0. Note that [0] is its own additive inverse. This analysis can be
generalized for any modulus n ∈ N.

Let’s look at multiplication.

©2021-2022, John M. Morrison 9



4 MODULAR ARITHMETIC

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 4 1

Here is an alarming fact: [2][3] = [0]. This tells us that neither 2 nor 3 can
have a multiplicative inverse (why?). Also, [4][3] = [0]. Observe that [5] is its
own multiplicative inverse, as is, obviusly [1]. An elmement [k] is called a zero
divisor if for some [m], [k][m] = [0].

Exercises

1. Show that a zero divisor in Z/nZ cannot have a multiplicative inverse.
2. Make the multiplication table for Z/7Z. Do you see any zero divisors? Is

there any element without a multiplicative inverse other than [0]?
3. Show that addition in Z/nZ is commutative and associative.
4. Show that multiplication in Z/nZ is commutative and associative.

We will now consider this question. Are there any elements in modular
arithmetic other than zero divisors or elements having multiplicative inverses?

Suppose that in mod n arithmetic that k has a multiplicative inverse. Then
we can find m so that [k][m] = [1]. This says that n | km−1. Choose an integer
q so that nq = km− 1. Then nq + k(−m) = 1. Consequently, gcd(k, n) = 1.

Conversely, suppose gcd(k, n) = 1. Then by Bezout’s theorem there exist x
and y so that kx+ ny = 1. Hence, kx− 1 ≡ modn, So [k][x] = [1].

We have just proven this result.

Theorem 10. Suppose n ∈ N. Then [k] ∈ Z/nZ has a multiplicative inverse if
and only if gcd(n, k) = 1.

Corollary 3. If p is a prime number, every nonzero element of Z/pZ has a
multiplicative inverse.

Now suppose n ∈ N and that k ∈ Z/nZ satisfies gcd(n, k) > 1. Then we
have [m] ∈ Z/nZ so that m gcd(n, k) = n. Then [m][gcd(n, k)] = [0]. Since we
have 1 < m, gcd(n, k) < n, we have shown that gcd(n, k) is a zero divisor in
Z/nZ. Hence (easy exerise), any multiple of gcd(n, k) is also a zero divisor in
Z/nZ.

We have a dichotomy here. If [k] ∈ Z/nZ, then [k] has a multiplicative
inverse or it is a zero divior.

©2021-2022, John M. Morrison 10



5 THE RATIONAL NUMBERS

5 The Rational Numbers

Consider the set of all ordered pairs (p, q) of integers where q 6= 0. We define
an eqivalence relation on this set by defining (p, q) ∼ (r, s) if ps = qr.

Exercises

1. If c 6= 0, show that (cp, cq) ∼ (p, q).

2. Show that (0, p) ∼ (0, 1) for any nonzero integer p.

A rational number is an equivalence class on Z× (Z−{0}) under this equiv-
alnece. The set of all rational numbers is denoted by Q.

Lemma 3. Suppose that (a, b) ∼ (p, q) and that (c, d) ∼ (r, s). Then (aq +
bp, bq) ∼ (cs+ dr, ds).

Proof. Run the computation in the definitiion.

(aq + bp)ds = adqs+ bdps

and
bq(cs+ dr) = bcqs+ bdqr.

Now use the fact that ad = bc and qr = ps and we are done.

We can now define addition on the rationals by

(a, b) + (p, q) = (aq + bp, bq).

Note that we can also define subtraction via

(a, b) + (p, q) = (aq − bp, bq).

Lemma 4. Suppose that (a, b) ∼ (p, q) and that (c, d) ∼ (r, s). Then (ap, bq) ∼
(cr, ds).

Proof. An exercise

Exercise

1. Verify that addition is commutative

2. Verify that addition is associative

3. Verify that the additive inverse of (a, b) is (−a, b).
4. Show that if (a, b) ∼ (p, q) and (c, d) ∼ (r, s), then (ap, bq) ∼ (cr, ds).
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5.1 Order! 5 THE RATIONAL NUMBERS

Every nonzero element in the rationals has a multplicative inverse. The
rational (a, b) is not zero if a 6= 0. In that case (b, a) · (a, b) = (ab, ab) = (1, 1).

We will say that a rational (a, b) is in canonical form if two conditions are
met.

• The element (a, b) has b > 0. This can be achieved using the fact that
(a, b) ∼ (−a,−b) and “chasing the negative upstairs.”

• gcd(a, b) = 1. Suppose we have (a, b) with b > 0. Put d = gcd(a, b). Then
(a/d, b/d) ∼ (a, b) and gcd(a/d, b/d) = 1, so any rational can be put in
canonical form.

Exercise Show that if (a, b) ∼ (c, d), then (a, b) and (c, d) have the same
canonical form.

Theorem 11. No two distinct canonical forms are equivalent under ∼.

Proof. Suppose that (p, q) and (a, b) are in canoniclal form and that (p, q) ∼
(a, b). Then we know that pb = aq. Since gcd(a, b) = 1, by Bezout’s theorem
we can find integers x and y so that px+ qy = 1. Multiply by a to see that

apx+ aqy = a.

But bp = aq, so

a = apx+ aqy = apx+ bpy = p(ax+ by) = p.

We now know that a = p.

Since pb = aq = pq, b = q.

Every (a, b) is equivalent to exactly one canonical form. This form is ob-
tained by dividing both a and b by gcd(a, b) and by kicking any negative in the
denominator by negating both a and b.

The integers in Q are the rationsls (n, 1) for n ∈ Z.

5.1 Order!

We will define the relations < and ≤ on the rationals as folllows. If (a, b)
and (c, d) are in canonical form, we define (a, b) < (c, d) if ad − bc < 0 and
(a, b) ≤ (c, d) if ad− bc ≤ 0. These relations satisfies the following properties.

• < and ≤ are transitive

• ≤ is reflexive and for all rationals (a, b) < (a, b) is false.
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6 DISAPPOINTMENT

• < is antisymmetric.

• If (a, b) ≤ (c, d) and (c, d) ≤ (a, b), (a, b) = (c, d).

In common parlance, the pair (a, b) is denoted by a/b. All of the laws of
fractional arithmetic apply to this set. In particular

• Addition is commutative and associative.

• The neutral element of addition is (0, 1).

• The additive inverse of (a, b) is (−a, b).
• Multiplication is commutative and associative.

• Every nonzero element has a multiplicative inverse.

All of the familiar rules of fractional arithmetic apply to the rationals. You
are again on familiar ground. We now see the rationals as an extension of the
integers. The canonical form of a ratonal is juss the fully-reduced form with
any negative kicked into the numerator.

6 Disappointment

Holey, holey, holey, we shall see that the rational numbers have holes. Lots of
them. In a way they are quite diaphanous.

Consider a 45-45-90 right triangle whose legs have unit length. Then, by the
Pythagorean theorem, the length of the hypotenuse, c is

c2 = 1 + 1 = 2.

We will see that there is no rational number assuming this (very real) length.

Theorem 12. There is no rational number whose square is 2.

Proof. Suppose such a thing exists; let its canonical form be denoted by p/q.
Then

p2

q2
= 2.

Multiply both sides by 2. We have p2 = 2q2. This tells us that p2 is even. Since
2 si prime and 2 | p2, we must have 2|p, so p is even. But, in that case, 4 | p2.

Since p2 is divisble by 4 and equals 2q2, we must have 2 mod q2. Hence q
is even. This is a contradiction of the fact that p/q is in canonical form. The
hypothesis that the rational representation exists is false. There is no rational
whose square is 2.
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7 Q IS NOT ORDER-COMPLETE

This argument is a pinprick that blasts the balloon. Nothing is special about
2; this argument could be extended to any integer that is not a perfect square.
Even worse, if p/q is in canonical form and p and q are not both perfect squares,
then there is no rational whose square is p/q. Yes, the rationals are a diaphanous
affair, indeed.

7 Q is not Order-Complete

We will see that the rationals fail to satisfy the greatest lower bound property.

Lemma 5. Suppose that a and b are rational numbers. Then

2ab ≤ a2 + b2.

Proof. Choose rationals a and b; since the square of any rational number is
nonnegative, we have 0 ≤ (a− b)2. Expanding we get

0 ≤ a2 + b2 − 2ab.

The lemma follows immediately.

Lemma 6. Suppose that p > 0 and p2 > 2. Then

p >
1

2

(
p+

2

p

)
.

Proof. Since p2 > 2 and p is positive, we can divide both sides by 2p and see
that

p

2
>

1

p
.

Now add p/2 to both sides to get

p >
p

2
+

1

p
=

1

2

(
p+

2

p

)
.

Theorem 13. The set of all rational numbers whose square is larger than 2 has
no greatest lower bound.

Proof. By way of contradiction, assume the contrary. Let p be such a greatest
lower bound. Put

q =
1

2

(
p+

2

p

)
By Lemma 2, we have

p > q
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7 Q IS NOT ORDER-COMPLETE

We are now going to show that q2 > 2. Begin by expanding.

q2 =
1

4

(
p2 +

4

p2
+ 4

)
= 1 +

p4 + 4

4p2
.

By Lemma 2, we know that

p4 + 4

4p2
≥ 4p2

4p2
= 1,

so we can conclude that q2 > 2. We have a contradiction because q is also a
greatest lower bound for this set, establishing our result.
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